

鋼筋混凝土建築物耐震能力詳細 新混凝土建築物耐震能力詳細 算体系統SERCB之介紹 整益超¹ 宋裕祺² 賴明俊³ 邱毅宗³ 趙國宏⁴ 黃瑞琪⁵ 林洋志⁵ 鄭禾豐⁵ ¹國立台灣大學主本工程學系 名譽教授 ²國立台北科技大學 教授

- ⁻國立台北科技大學 教授 ³國立台北科技大學 博士
- 4國立台北科技大學博士生
- 5國立台北科技大學 碩士生

2 鋼筋混凝土建築結構非線性行為

靜態側推分析(Pushover Analysis)

- 藉由施加側向力於結構物上,隨著力量緩慢增加,記錄 構材開裂、降伏、塑性變形和結構失敗 等發展行為,並在一連串的迭代過程中,依各不同受力 階段之結構行為,修正構材有效勁度與不平衡力,採用 階段線性分析的方式,直到塑性鉸發展至崩塌機制或到 達極限塑性變形為止。
- 2. 能清楚地提供結構物在各性能階段的受力與 變形行為。

內政部營建署混凝土結構設計規範: $V_n = V_c + V_s$ 箍筋提供之剪力強度: $V_s = A_{sh}f_{yh}\frac{d}{a}$ (矩形斷面) $V_s = \frac{\pi}{2}\frac{A_hf_{yh}D}{a}$ (圓形斷面)

塑鉸區混凝土剪力強度: $V_c = 0.53(k+F)\sqrt{f'_c}A_e \ge 0$; $k = \frac{4.2-R}{3.2} \ge 0$

柱剪力強度-韌性比關係之建立

為綜合討論柱的撓曲行為與剪力行為,將所得柱剪力強度-轉角的關係依不同狀況轉換為**彎矩-轉角**的關係。

1. 彈性階段與降伏階段 $M_{vy} = V_n(\theta) \times h$

2. 極限階段 $M_{vu} = V_n(\theta) \times \left(h - \frac{L_p}{2}\right)$

單柱式鋼筋混凝土柱塑性鉸之設定

東京工業大學 川島一彦研究室

900

g

400

TP13

400

單柱式鋼筋混凝土柱塑性鉸之設定

-150

200

75

-75

-25

Displacement (mm)

-SERCB

50

25

-150

-200

-100

-75

-25

SERCB

25 50 75

Displacement (mm)

-150

-75

-50

-25

Displacement (mm)

100

-SERCB

50

25

-150

-200

-75

-50

-25

Displacement (mm)

75

-SERCB

50

25

Case1. 混凝土固定(fc'=350)-軸力變化(10ton~30ton)

JSCE4

Case1. 混凝土固定(fc'=350)-軸力變化(10ton~30ton)

Case2. 混凝土變化(fc`=150~350)-軸力固定(16ton)

構架BMDF試體

構架BMNF試體

(含開口RC牆非韌性構架之耐震行為研究,黃世建、陳力平、陳俊宏,2003)

構架BMNF-FC試體

(含牆RC構架之耐震分析及設計 研究,黃昭勳、蔡驥鑫,2003)

構架Pure Frame試體

Pseudodynamic test of reinforced concrete columns

Ground acceleration and velocity for TCU075 TCU102

Ground acceleration and velocity for TCU102

Specimen A – cyclic loading test and analysis result

Specimen B –

Pseudodynamic and analysis results for as-built Specimen subject to TCU075

30

Specimen C –

Pseudodynamic and analysis results for as-built Specimen subject to TCU102

Energy (kN-mm)

Yu-Chi Sung, Shuenn-Yih Chang and Chin-Kuo Su, "Analytical and Experimental Responses of Reinforced Concrete Bridge Columns under Strong Near-Fault Ground Motion" submitted to Journal of Earthquake Engineering.

Pushover analysis is highly sensitive to the structural nonlinearity of frame and RC wall

Lai, M.C., Sung, Y.C., "A Study on Pushover Analysis of Frame Structure Infilled with Low-rise Reinforced Concrete Wall", *Journal of Mechanics*, Vol. 24, 2008, p.p. 437-449

SOFTEN STRUT-TIE MODEL

Equivalent diagonal structural strut of an RC wall

Lai, M.C., **Sung, Y.C.**, **"A Study on Pushover Analysis of Frame Structure Infilled with Low-rise Reinforced Concrete Wall**", *Journal of Mechanics*, Vol. 24, 2008, p.p. 437-449

RC牆模擬分析 Equilibrium (1/2)

Based on the theory of fixed angle softened truss model, the

angle of cracks in the postcracking concrete coincides with the angle $\theta = \tan^{-1}\left(\frac{h}{d}\right)$

 $(\sigma_{lc},\sigma_{tc},\tau_{ltc})$

 $(\sigma_{d} - \sigma_{r})$

The equilibrium can be expressed as following Eqs., according to the Mohr circle of stress.

$$\sigma_{lc} = \sigma_d \cos^2 \theta + \sigma_r \sin^2 \theta$$

$$\sigma_{tc} = \sigma_d \sin^2 \theta + \sigma_r \cos^2 \theta$$

$$\tau_{ltc} = (-\sigma_d + \sigma_r) \sin \theta \cos \theta$$

$$V_c = \tau_{ltc} \times b_w \times d$$

The total shear force applied on the RC wall

$$V = V_c + V_s = \tau_{ltc} \times b_w \times d + A_{st} \times f_t \times \frac{d}{s} \tan \theta$$

RC牆模擬分析 Compatibility

Based on the theory of fixed angle softened truss model, the compatibility can be expressed as following Eqs., according

to the Mohr circle of strain.

$$\varepsilon_{l} = \varepsilon_{d} \cos^{2} \theta + \varepsilon_{r} \sin^{2} \theta$$
$$\varepsilon_{t} = \varepsilon_{d} \sin^{2} \theta + \varepsilon_{r} \cos^{2} \theta$$
$$v_{t} / 2 = (-\varepsilon_{d} + \varepsilon_{r}) \sin \theta \cos \theta$$

Both the strength and stiffness of cracked reinforced concrete in compression are lower than those of uniaxial compressed concrete.

Softening effect on the biaxial constitute laws of concrete

$$\zeta = \frac{0.9}{\sqrt{1 + 600\varepsilon_r}}$$

RC) 牆模擬分析 Constitutive Laws of Concrete(2/3)

$$\varepsilon_d \, / \, \zeta \varepsilon_0 \leq 1$$

$$\sigma_{d} = \zeta f'_{c} \left[2 \left(\frac{\varepsilon_{d}}{\zeta \varepsilon_{0}} \right) - \left(\frac{\varepsilon_{d}}{\zeta \varepsilon_{0}} \right)^{2} \right]$$

$$\varepsilon_d / \zeta \varepsilon_0 > 1$$

$$\sigma_{d} = \zeta f'_{c} \left[1 - \left(\frac{\varepsilon_{d} / \zeta \varepsilon_{0} - 1}{2 / \zeta - 1} \right)^{2} \right]$$

Belarbi and Hsu

$$\zeta = \frac{0.9}{\sqrt{1 + 600\varepsilon_r}}$$

RC) 牆模擬分析 Constitutive Laws of Concrete(3/3)

Vecchio and Collins

$$\mathcal{E}_r \leq \mathcal{E}_{cr}$$

$$\sigma_r = E_c \varepsilon_r$$

$$\mathcal{E}_r > \mathcal{E}_{cr}$$

$$\sigma_r = f_{cr} \left(\frac{\mathcal{E}_{cr}}{\mathcal{E}_r}\right)^{0.4}$$

RC) 牆模擬分析 Constitutive Laws of Reinforcement

$$\mathcal{E}_{s} \leq \mathcal{E}_{y}$$

$$f_s = E_s \varepsilon_s$$

$$\varepsilon_s > \varepsilon_y$$

$$f_s = f_y$$

$$V_s = A_{st} \times f_t \times \frac{d}{s} \tan \theta$$

RC:牆模擬分析 RC:牆剪力分析流程

$$\sigma_{d} = \zeta f'_{c} \left[2 \left(\frac{\varepsilon_{d}}{\zeta \varepsilon_{0}} \right) - \left(\frac{\varepsilon_{d}}{\zeta \varepsilon_{0}} \right)^{2} \right]$$

$$\sigma_{d} = \zeta f'_{c} \left[1 - \left(\frac{\varepsilon_{d} / \zeta \varepsilon_{0} - 1}{2 / \zeta - 1} \right)^{2} \right]$$

$$\sigma_{r} = E_{c} \varepsilon_{r} \qquad \sigma_{r} = f_{cr} \left(\frac{\varepsilon_{cr}}{\varepsilon_{r}} \right)^{0.4}$$

$$\left[\frac{y}{\varepsilon_{0} \times \zeta} \right]^{<} \qquad f_{s} = E_{s} \varepsilon_{s}$$

$$\left[\frac{y}{\varepsilon_{0} \times \zeta} \right]^{<} \qquad f_{s} = f_{y}$$

$$\varepsilon_{l} - \varepsilon_{d} \cos \varphi + \varepsilon_{r} \sin \varphi$$

$$\varepsilon_{t} = \varepsilon_{d} \sin^{2} \theta + \varepsilon_{r} \cos^{2} \theta$$

$$\gamma_{lt} / 2 = (-\varepsilon_{d} + \varepsilon_{r}) \sin \theta \cos \theta$$

$$\sin^{2} \theta + \sigma_{r} \cos^{2} \theta$$

$$V_{c} = \tau_{llc} \times b_{w} \times d$$

$$v_{c} = \tau_{llc} \times b_{w} \times d$$

$$v_{c} = \tau_{llc} \times b_{w} \times d$$

RC) 播模擬分析 Aeff of equivalent diagonal structural strut

Shear strength of RC wall

Pushover Analysis Results

Lai, M.C., Sung, Y.C., "A Study on Pushover Analysis of Frame Structure Infilled with Low-rise Reinforced Concrete Wall", *Journal of Mechanics*, Vol. 24, 2008, p.p. 437-449

鋼筋混凝土構件補強理論探討與分析驗證

翼牆補強工法

翼牆補強工法分析種類

試體編號		SC2 SC3	
斷面形狀		圓形	圓形
混凝土抗壓強度	kgf/cm ²	260	260
混凝土保護層	cm	2.5	2.5
斷面尺寸(深×寬)	cm	76×76	76 imes 76
柱高	cm	325	325
主筋降伏強度	kgf/cm ²	3500	3500
主筋配置	—	26-#5	30-#5
箍筋降伏強度	kgf/cm ²	5000	5000
塑鉸區箍筋間距	cm	#3@13	#3@13
補強鋼板厚度	cm	0.3	0.3
柱軸力	tonf	143	143

擴柱補強柱S2之立面圖(張順益, 2010)

試體編號	S2				
斷面形制	矩形				
混凝土抗壓強度 kgf/cm ²		175			
混凝土保護層	cm	4			
斷面尺寸(深×寬)	40×30				
柱高 cm		180			
主筋降伏強度	kgf/cm ²	3547			
主筋配置	14-#5				
箍筋降伏強度 kgf/cm ²		4257			
塑鉸區箍筋間距	#3@25				

試體編號(補強	S 2	
斷面形制	矩形	
補強混凝土厚度	15	
補強斷面(深×寬)	cm	70 imes 60
補強區保護層	cm	3
補強混凝土強度	kgf/cm ²	245
補強主筋配置	_	12-#6
補強箍筋配置	cm	#3@10
補強主筋降伏強度	kgf/cm ²	4995
補強箍筋降伏強度	kgf/cm ²	4257
RC包覆與基礎間隙	_	
柱軸力	Tonf	28

試體編號	S5	
斷面形制	矩形	
混凝土抗壓強度 kgf/cm ²		175
混凝土保護層	cm	4
斷面尺寸(深×寬)	40×30	
柱高	150	
主筋降伏強度	kgf/cm ²	3547
主筋配置	—	14-#5
箍筋降伏強度 kgf/cm ²		4257
塑鉸區箍筋間距 cm		#3@25

試體編號(補強	S5	
斷面形制	矩形	
翼牆斷面(深×寬)	18× 40	
補強區保護層	2.7	
補強混凝土強度	245	
補強主筋配置	6-#4	
補強箍筋配置	#4@20	
補強主筋降伏強度	kgf/cm ²	4159
補強箍筋降伏強度	4159	
基礎間隙	_	
柱軸力	28	

鋼筋混凝土構架

(典型校舍耐震補強設計與驗證,邱聰智、邱建國、葉勇凱、簡文郁、鐘立來、周德光,2008)

鋼筋混凝土構架-RC包覆強度補強(SBFU-C)

國家地震中心SBFU-C試體

鋼筋混凝土構架-RC包覆強度補強(SBFU-C)

內嵌式-環氧樹脂接合

壓力構件 $Q_{CE} = P_n = A_g F_{cr}$

 $\lambda_c \leq 1.5$ $F_{cr} = 0.658 \lambda_c^2 F_{v}$ $\lambda_c > 1.5$ $F_{cr} = 0.877 F_{v} / \lambda_c^2$

	模型參數			可接受標準				
	塑性變形		殘餘強					
			度比	IO	主要桿件		次要桿件	
桿件	a	b	с	10	LS	СР	LS	СР
受壓斜撐(EBF斜撐除外)								
a. 雙角鋼面內挫屈	$0.5\Delta_{\rm c}$	$9\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$5\Delta_{\rm c}$	$7\Delta_{\rm c}$	$7\Delta_{\rm c}$	$8\Delta_{\rm c}$
b. 雙角鋼面外挫屈	$0.5\Delta_{\rm c}$	$8\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$4\Delta_{\rm c}$	$6\Delta_{\rm c}$	$6\Delta_{\rm c}$	$7\Delta_{\rm c}$
c.₩或I型	$0.5\Delta_{\rm c}$	$8\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$5\Delta_{\rm c}$	$7\Delta_{\rm c}$	$7\Delta_{\rm c}$	$8\Delta_{\rm c}$
d. 雙槽型鋼面內挫屈	$0.5\Delta_{\rm c}$	$9\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$5\Delta_{\rm c}$	$7\Delta_{\rm c}$	$7\Delta_{\rm c}$	$8\Delta_{\rm c}$
e. 雙槽型鋼面外挫屈	$0.5\Delta_{\rm c}$	$8\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$4\Delta_{\rm c}$	$6\Delta_{\rm c}$	$6\Delta_{\rm c}$	$7\Delta_{\rm c}$
f.鋼管混凝土	$0.5\Delta_{\rm c}$	$7\Delta_{\rm c}$	0.2	$0.25\Delta_{\rm c}$	$4\Delta_{\rm c}$	$6\Delta_{\rm c}$	$6\Delta_{\rm c}$	$7\Delta_{\rm c}$
受接斜撑(EBF斜撑除外)	$11\Delta_{\rm T}$	$14\Delta_{\rm T}$	0.8	$0.25\Delta_{\rm T}$	$7\Delta_{\rm T}$	$9\Delta_{\rm T}$	$11\Delta_{\rm T}$	$13\Delta_{\rm T}$

FEMA-356軸力位移關係圖

內嵌式鋼斜撐框架補強試體分析比對

試體編號	No.21	
混凝土抗壓強度	kgf/cm^2	330
型鋼降伏應力	kgf/cm^2	3180
D10 主筋降伏應力	kgf/cm^2	3720
D13 主筋降伏應力	kgf/cm^2	3710
箍筋降伏應力	kgf/cm^2	4821

外附式鋼框架補強試體分析比對

(Rieko UEKI, Katsuhiko IMAI)

外加鋼框架試體F-1.5-1

Transform Capacity Curve to Capacity Spectrum

$$S_a = S_{DS} = EPA \times 2.5$$
$$EPA = S_{DS} / 2.5 = 0.4S_{DS}$$

$$S_{ai} = S_{DS} / F_U = EPA \times 2.5 / F_U$$
$$EPA = S_{DS} / 2.5 = 0.4S_{DS}$$

F_u-µ-T 結構系統地震力折減係數法

*F*_u-μ-T 結構系統**地震力折減係數**法

$$F_{u}(R) = \begin{cases} R_{i} & ; \quad T \ge T_{0}^{D} \\ A + (R_{i} - A) \times \frac{T - 0.6T_{0}^{D}}{0.4T_{0}^{D}} & ; \quad 0.6T_{0}^{D} \le T < T_{0}^{D} \\ A & ; \quad 0.2T_{0}^{D} \le T < 0.6T_{0}^{D} \\ A + (A - 1) \times \frac{T - 0.2T_{0}^{D}}{0.2T_{0}^{D}} & ; \quad T \le 0.2T_{0}^{D} \end{cases}$$

$$A = \sqrt{\left[1 + \alpha(R_i - 1)\right] \left[2R_i - 1 - \alpha(R_i - 1)\right]}$$
$$R_i = \frac{\delta_i}{\delta_y}$$

容量曲線降伏點選取辦法(1/2)

容量曲線降伏點選取辦法(2/2)

較短週期	短週期	中週期	長週期
$T \leq 0.2 T_0^D$	$0.2T_0^D \le T < T_0^D$	$T_0^D \le T < 2.5 T_0^D$	$T \ge 2.5T_0^D$
$\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a_{pi} \times F_u(R)}{\left[1 + \frac{3T}{0.4T_0^D}\right]}$	$\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a_{pi} \times F_u(R)}{2.5}$	$\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a}{2}$	$\frac{S_{pi} \times F_u(R)}{S_{D1}}$

較短週期	短週期	中週期	長週期
$T \leq 0.2T_0^D$	$0.2T_0^D \le T < T_0^D$	$T_0^D \le T < 2.5 T_0^D$	$T \ge 2.5T_0^D$
$\boxed{\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a_{pi} \times F_u(R)}{\left[1 + \frac{3T}{0.4T_0^D}\right]}}$	$\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a_{pi} \times F_u(R)}{2.5}$	$\frac{a_{pi} \times F_u(R)}{\left[\frac{S_{aD}(T)}{0.4S_{DS}}\right]} = \frac{a}{100}$	$\frac{T_{pi} \times F_u(R)}{\frac{T_0^D}{0.4T}}$

有效最大加速度(EPA)

非彈性譜加速度與彈性譜加速度之比

 $\boldsymbol{B}_{1} \text{ or } \boldsymbol{B}_{s} = \frac{(\boldsymbol{S}_{a})_{elastic}}{(\boldsymbol{S}_{a})_{inelastic}}$

$$(S_a)_{inelastic} = a_{pi}$$
 $(S_d)_{inelastic} = d_{pi}$

側推分析所得容量震譜中任何一處譜加速度 a_{pi}

對應的有效最大速度(EPA)與所在工址之地震需求特性(如 S_{aD} & S_{DS} 等),橋梁結構物等效振動週期T、等值黏滯性阻尼 (β_{eff}) 與阻尼比異於5%加速度修正係數 B_1 或 B_s

等有關,可表示如下:

較短及短週期	中週期	長週期
$T \leq T_0^D \frac{B_s(\beta_{eff})}{B_1(\beta_{eff})}$	$T_0^D \frac{B_s(\beta_{eff})}{B_1(\beta_{eff})} < T \le 2.5 T_0^D \frac{B_s(\beta_{eff})}{B_1(\beta_{eff})}$	$2.5T_0^D \frac{B_s(\beta_{eff})}{B_1(\beta_{eff})} < T$
$EPA = \frac{a_{pi} \times B_s(\beta_{eff})}{(\frac{2.5S_{aD}(T)}{S_{DS}})} = \frac{a_{pi} \times B_s(\beta_{eff})}{2.5}$	$EPA = \frac{a_{pi} \times B_1(\beta_{eff})}{(\frac{2.5S_{aD}(T)}{S_{DS}})}$	$EPA = \frac{a_{pi} \times B_1(\beta_{eff})}{(\frac{2.5T_0^D}{T})}$

Yu-Chi Sung, Chin-Kuo Su, Chuan-Wei Wu, and I-Chau Tsai, **"Performance-Based Damage Assessment of Low-Rise Reinforced Concrete Buildings"**, submitted to the Journal of China Institute of Engineer. **[SCI · EI]**

結構性能耐震評估

依中華民國一百年「建築物耐震設計規範及解說」第八章規定

8.2 耐震能力評估與耐震補強

- 建築物進行耐震能力評估前,應對主要結構部分(如梁、柱、剪力牆與斜撐 系統等)作實地調查。並應充分了解建築物之現況、震害經驗與修復補強情 形等影響耐震能力之各項因素。
- 耐震能力評估與補強的基準應為主管建築機關所認可者,耐震能力評估的方法應為公認之學理。
- 耐震補強應依據耐震能力評估之結果,作通盤檢討後確認建築物之耐震安全性。如有必要作補強以提昇其耐震能力時,應依主管建築機關規定之程序辦理。
- 耐震補強應依其補強的目標,採用改善結構系統、增加結構體韌性與強度等 方式進行,惟應注意各項抗震構材之均衡配置,以使建築物整體結構系統耐 震能力之均衡提昇。
- 5. 耐震補強或改修不得產生有害基礎安全之情形(如沈陷、變形等)。

解說:

行政院已於民國 89 年 6 月 16 日核定「建築物實施耐震能力評估及補強方 案」,期以公有建築物先行執行,作為民間表率,供爾後全面實施之參考,對於 私有建築物擬以宣導方式推動。為確實有效進行建築物耐震評估及補強,該方案 於 97 年 11 月 27 日修正部分條文,其對於耐震能力評估及補強基準如下,可供 參考:

- 一、建築物之耐震能力評估分初步評估與詳細評估,初步評估供快速篩選優先評 估順序對象之用。經初步評估判定為無疑慮者,得不必進行詳細評估;判定 為有疑慮及確有疑慮者,除拆除重建外,應進行詳細評估或耐震設計補強。
- 二、實施耐震能力詳細評估之建築物,其不需補強或補強後之耐震能力應達下列 基準:
- (一)建築物之耐震能力以其能抵抗之最大地表加速度表示,其耐震能力應達本 規範所規定工址回歸期475年之設計地震地表加速度乘以用途係數Ⅰ。
- (二)建築物亦得以<u>性能目標</u>作為耐震能力之檢核標準,確保該建築物在工址<u>回</u> 歸期475年之設計地震力下所需達到之性能水準。
- (三)進行結構耐震能力評估與補強設計時,應考慮非結構牆之效應,並檢討軟 弱層存在之情況。
- 三、用途係數 I=1.5 之建築物,應檢討其供水、供電及消防設備系統固定之耐震 能力;並應考慮墜落物對建築使用機能之影響。設備系統固定處之耐震能力 以其所在樓層加速度檢核之,其耐震能力應達本規範之加速度規定。

建築物耐震設計規範及解說

8.2 耐震能力評估與耐震補強

- 建築物進行耐震能力評估前,應對主要結構部分(如梁、柱、剪力牆與斜撑 系統等)作實地調查。並應充分了解建築物之現況、震害經驗與修復補強情 形等影響耐震能力之各項因素。
- 耐震能力評估與補強的基準應為主管建築機關所認可者,耐震能力評估的方法應為公認之學理。
- 耐震補強應依據耐震能力評估之結果,作通盤檢討後確認建築物之耐震安全性。如有必要作補強以提昇其耐震能力時,應依主管建築機關規定之程序辦理。
- 耐震補強應依其補強的目標,採用改善結構系統、增加結構體韌性與強度等 方式進行,惟應注意各項抗震構材之均衡配置,以使建築物整體結構系統耐 震能力之均衡提昇。
- 5. 耐震補強或改修不得產生有害基礎安全之情形(如沈陷、變形等)。

解說:

TECH

行政院已於民國 89 年 6 月 16 日核定「建築物實施耐震能力評估及補強方 案」,期以公有建築物先行執行,作為民間表率,供爾後全面實施之參考,對於 私有建築物擬以宣導方式推動。為確實有效進行建築物耐震評估及補強,該方案 於 97 年 11 月 27 日修正部分條文,其對於耐震能力評估及補強基準如下,可供 參考:

- 一、建築物之耐震能力評估分初步評估與詳細評估,初步評估供快速篩選優先評 估順序對象之用。經初步評估判定為無疑慮者,得不必進行詳細評估;判定 為有疑慮及確有疑慮者,除拆除重建外,應進行詳細評估或耐震設計補強。
- 二、實施耐震能力詳細評估之建築物,其不需補強或補強後之耐震能力應達下 列基準:
- (一)建築物之耐震能力以其能抵抗之最大地表加速度表示,其耐震能力應達本規範所規定工址回歸期475年之設計地震地表加速度乘以用途係數I。
- (二)建築物亦得以性能目標作為耐震能力之檢核標準,確保該建築物在工址 回歸期475年之設計地震力下所需達到之性能水準。
- (三)進行結構耐震能力評估與補強設計時,應考慮非結構牆之效應,並檢討 軟弱層存在之情況。
- 三、用途係數 I=1.5 之建築物,應檢討其供水、供電及消防設備系統固定之耐震 能力;並應考慮墜落物對建築使用機能之影響。設備系統固定處之耐震能力以其 所在樓層加速度檢核之,其耐震能力應達本規範之加速度規定。

設計地震:0.4S_{DS} 檢核

耐震設計規範中各種地震力之定義

水牛 쓴는 내수 쉽는	空今年	使田林	修復性		
			短期	長期	
PL _A PL _A * PL _A **	結構保持彈 性	與地震前機 能相同	臨時維修	無	
PL _B PL _B * PL _B **	結構產生可 修復之塑性 變形防止倒 塌	短期搶修可 恢復震前機 能	緊急修復或 更換受損構 件	局部整修或 結構補強	

建築物之性能目標(適用於一般工址或台北盆地)

地震等級		用途係數	
	I=1.0	I=1.25	I=1.5
設計地震	PL _B	PL _B *	PL _B **

N生 台户 出于 台后	一般工址			台北盆地		
IT BEITA 22	I=1.0	I=1.25	I=1.5	I=1.0	I=1.25	I=1.5
PL _B	1/2	—	_	1/3	—	_
PL _B *	_	5/12	_	_	7/24	—
PL _B **	_	_	1/3	_	_	1/4
註: $r = \frac{S_d - S_{dy}}{S_{du} - S_{dy}}$ S_d : 非彈性譜位移 S_{dy} : 降伏譜位移 S_{du} : 極限譜位移						

建築物耐震性能目標

TECH

97

高樓層建築物耐震能力分析 Modal Pushover Analysis (MPA)

 $u_{rn} = \Gamma_n \phi_{rn} D_n$

(inelastic design spectrum)

 $u_r = \sqrt{\sum u_{rn}^2}$

Dn

Complete Quadratic Combination Method (CQC)

$$r_{a} = \left(\sum_{j=1}^{N} \sum_{k=1}^{N} S_{jk} r_{j} r_{k}\right)^{1/2}$$

$$S_{jk} = \frac{8\sqrt{\xi_{j}\xi_{k}} (\xi_{j} + r\xi_{k}) r^{3/2}}{(1 - r^{2})^{2} + 4\xi_{j}\xi_{k} r(1 + r^{2}) + 4(\xi_{j}^{2} + \xi_{k}^{2}) r^{2}}$$

$$r = \frac{W_{k}}{W_{k}}$$

其中, r_j , r_k 分別為第j振態及第k振態最大反應值, S_{jk} 為第j振態與第k振態之關係係數。 ξ_j 、 ξ_k 分別為第j、k振態的阻尼比, w_j 、 w_k 分別為第j、k振態的圓周頻率。

 W_{i}

Complete Quadratic Combination Method (CQC)

PUSHOVER可得各樓層之層間位移、層間剪力與層間勁度

Time History Analysis

建立層間位移與層間剪力關係

Time History Analysis

Spectrum Compatible

Spectrum Compatible

Desogn Response Spectrum

Comparison of capacity curves obtained by time history analysis and pushover analysis

Base shear vs roof displacement EPA vs roof displacement 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 90000 90000 0.8 + 0.8 0.7 0.7 75000 75000 0.6 0.6 60000 60000 Base Shear(kN) 0.5 0.5 EPA(g) 45000 45000 0.4 0.4 0.3 0.3 30000 30000 --- Pushover Capacity Curve **Pushover PGA-Displacement** 0.2 0.2 Time History-TAP022 Time History-TAP022 ---- Time History-TAP089 15000 15000 Time History-TAP089 — Time History-TAP109 0.1 0.1 Time History-TAP109 **___** 0.0 0 0.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Displacement(m)

Displacement(m)

3 鋼筋混凝土構件補強理論探討與分析驗證

4 鋼筋混凝土建築結構耐震能力評估

第三章 動力分析方法

3.1 適用範圍

凡有下述任一情況之建築物,需以動力分析方法設計之:

- 1. 高度等於或超過 50 公尺或 15 層以上之建築物。
- 建築物超過20公尺或5層以上,且其勁度、重量配置或立面幾何形狀具有表
 1-1第1至第3種立面不規則性,或具有表1-2平面扭轉不規則性者。
- 3. 建築物超過5層或20公尺,非全高度具有同一種結構系統者。

動力分析方法可為反應譜分析法或歷時分析法。

解說:

一般而言,建築物不規則者,須進行動力分析。

動態歷時分析 (Dynamic Time-history Analysis)

不規則種類與定義	參考章節	
1a.勁度不規則性—軟層 軟層者係指該層之側向勁度低於其上一層者之 70%或其上三層平均 勁度之 80%。	3.1	
1b.勁度不規則性—-極軟層 極軟層者係指該層之側向勁度低於其上一層者之 60%或其上三層平 均勁度之 70%。	不容許	
2.質量不規則性 任一層之質量,若超過其相鄰層質量的150%者,稱此建築物具質量 不規則性。屋頂下一層之質量大於屋頂層質量150%者,不視為不規 則。	3.1	
3.立面幾何不規則性 任一層抵抗側力結構系統之水平尺度若大於其相鄰層者之 130%以 上,視此建築物具立面幾何不規則性,但閣樓面積甚小時,可不必考慮。	3.1	
 4.抵抗側力的豎向構材立面內不連續 抵抗側力的豎向構材立面內錯位距離超過該構材長度者。 	6.2.12	
5.強度不連續性—弱層 弱層為該層強度與該層設計層剪力的比值低於其上層比值 80%者。樓 層強度係指所考慮方向上所有抵抗地震層剪力構材強度之和。	1.8 2.17	

建築物立面不規則

質量不規則

幾何形狀不規則

劲度不规则

表 1-2 平面不規則性結構

不規則種類與定義	参考章節
1. 扭轉不規則性——橫隔版非柔性時需予考慮	2.14 . 3.1
在包含意外扭矩的地震力作用下,沿地震力方向最大側邊層變位大	3.7 . 6.1
於兩側邊平均層變位的 1.2 倍以上時,應視為具扭轉不規則性。	6.2.9
2. 具凹角性	6.2.9
結構及其側力抵抗系統的平面幾何形狀具有凹角者,超過凹角部分	
之結構尺寸大於沿該方向結構總長之15%以上者謂之。	
3. 横隔版不連續性	6.2.9
橫隔版具有急遽不連續性或勁度不連續性,包含切角或開孔,其面	
積超過全部面積 50%以上者,或兩層間有效橫隔版勁度之變化超過	
50%者。	
4. 面外之錯位性	6.2.9
側向力傳遞之路徑具不連續性,如豎向構材有面外錯位者。	6.2.12
5. 非平行結構系統	6.1
豎向側力抵抗構材不平行或對稱於側力抵抗系統之兩正交主軸者。	

樓版勁度之不連續

3.6 歷時分析法

3.6.1 輸入地震要求

至少三個與設計反應譜相符之水平地震紀錄,其應能確切反映工址設計地震 (或最大考量地震)之地震規模、斷層距離與震源效應。

針對任一個水平地震紀錄,計算其 5%阻尼之反應譜。同時,調整地震紀錄 使得位於 0.2T 至 1.5T 週期範圍內任一點之譜加速度值不得低於設計譜加速度值 之 90%及於此週期範圍內之平均值不得低於設計譜加速度值之平均值,其中 T 為建物基本模態之振動週期。

3.6.2 線性歷時分析

線性歷時分析之調整係數為 I/(1.4 α_yF_u),但為避免中小度地震時建築物過早 降伏,對一般工址與近斷層區域,調整係數不得低於 I/(4.2 α_y),對臺北盆地,調 整係數不得低於 I/(3.5 α_y)。分析所得任一主軸方向之總橫力,亦須依 3.3 節之規 定進行調整。對多組地震紀錄分析所得之反應值,採最大反應值進行設計。

3.6.3 非線性歷時分析

進行非線性歷時分析,結構之模擬除須按 3.4 節之規定進行,構材之非線性 分析模型須要能確切反應構材真實之非線性行為;非線性歷時分析所得之反應值 不得再以調整係數 *I*/(1.4α, *F*_u)予以折減。

建築物耐震能力非線性動力歷時評估流程

牆斜撐模擬及地震波設定

動力歷時分析斷面塑鉸設定(正負塑鉸設定流程) 以X向為例

動力歷時分析斷面塑鉸設定(正負塑鉸設定流程)

0.04 10000000

5000000

-5000000

-10000000

0.04

層間位移角對於不同用途係數下之折減

用途係數	I=1.0	I=1.25	I=1.5
475年 地震回歸期	3%	2.4%	2%
2500年 地震回歸期	4.5%	3.6%	3%

註:紅字為I=1.5下,透過475年回歸期與2500年回歸期之倍率關係求得

動力歷時分析檢核項目

TAIPEI TECH

250 200

150

100

50 (gal)

0 Acc. -50 -100

> -150 -200 -250 -300

> > 0.7

0.6

0.5 0.4

0

0

Sa 0.3 0.2 0.1

Incremental Dynamic Analysis(IDA)

Incremental Dynamic Analysis(IDA)

註:括號內為韌性發展之數量

3 鋼筋混凝土構件補強理論探討與分析驗證

4 鋼筋混凝土建築結構耐震能力評估

新誦 SERCB特色

- ▶ 內政部營建署97年3月審核通過。
- ▶ 修正ATC-40所提出之容量震譜法(或稱PushOver Method)觀念
 ・提出改良式建築物耐震能力評估方法。
- 考量材料非線性組成率,由考量彎矩-剪力互制行為建立塑鉸 ,理論背景完整,並已與實驗比對驗證。
- ▶ 可提供ETABS(V8.4.8與V9.0以上之版本)與MIDAS GEN(V761 與V820)執行PUSHOVER分析。(持續銜接最新版)
- ▶ 考量地震力作用下,軸力變化對構件性能之影響。
- ▶ 應用上無樓層數限制。
- ▶ 操作全視窗化,易操作,易檢核分析後結果。
- 開闢專屬網頁供使用者免費下載軟體,並設立Q&A專欄作為 各界意見溝通之平台。定期(每年元旦)與不定期通知使用者最 新資訊。專屬網站:

http://sercb.dyndns.org/SERCBWeb/Default.aspx

- > 不同地震波輸入結構體會得到不同結果
- >構材非線性塑性鉸特性與遲滯回圈定義要有 根據
- IDA在實務應用上不太可行(耗時太久),僅 需以特定地震歷時輸入(如475年或2500年回 歸期地震),檢核:
- ▶ (1)結構整體行為(層間位移比)
- > (2)構材局部行為(構件韌性檢核)

鋼筋混凝土建築物耐震能力評估與補強手冊

